I = V / R
P = V · I = I 2 · R = V 2 / R
VT = V1 + V2 + V3 + ...
IT = I1 = I2 = I3 = ...
RT = R1 + R2 + R3 + ...
1/CT = 1/C1 + 1/C2 + 1/C3 + ...
LT = L1 + L2 + L3 + ...
VT = V1 = V2 = V3 = ...
IT = I1 + I2 + I3 + ...
1/RT = 1/R1 + 1/R2 + 1/R3 + ...
CT = C1 + C2 + C3 + ...
1/LT = 1/L1 + 1/L2 + 1/L3 + ...
V1 = VT ⋅ R1 / (R1+R2+R3+...)
I1 = IT ⋅ (R2+R3+...) / (R1+R2+R3+...)
The sum of voltage drops at a current loop is zero:
∑ Vi = 0
The junction between several circuit elements is called a node.
The sum of the currents values at a node is zero:
C = Q / V
C = ε ⋅ A / l
ε is the permittivity in farad per meter (F/m).
ε = ε0 ⋅ εr
ε0 is the permittivity in vaccum.
εr is the relative permittivity or dialectric constant.
IC(t) = C dVC(t) / dt
VC(t) = VC(0) + 1/C ∫ IC(t)⋅dt
VL(t) = L dIL(t) / dt
IL(t) = IL(0) + 1/L ∫VL(t)⋅dt
WC = C⋅V 2 / 2
WL = L⋅I 2 / 2